CVE-2024-49861 Vulnerability Details

  /     /     /  

CVE-2024-49861 Metadata Quick Info

CVE Published: 21/10/2024 | CVE Updated: 19/11/2024 | CVE Year: 2024
Source: Linux | Vendor: Linux | Product: Linux
Status : PUBLISHED

CVE-2024-49861 Description

In the Linux kernel, the following vulnerability has been resolved: bpf: Fix helper writes to read-only maps Lonial found an issue that despite user- and BPF-side frozen BPF map (like in case of .rodata), it was still possible to write into it from a BPF program side through specific helpers having ARG_PTR_TO_{LONG,INT} as arguments. In check_func_arg() when the argument is as mentioned, the meta->raw_mode is never set. Later, check_helper_mem_access(), under the case of PTR_TO_MAP_VALUE as register base type, it assumes BPF_READ for the subsequent call to check_map_access_type() and given the BPF map is read-only it succeeds. The helpers really need to be annotated as ARG_PTR_TO_{LONG,INT} | MEM_UNINIT when results are written into them as opposed to read out of them. The latter indicates that it\'s okay to pass a pointer to uninitialized memory as the memory is written to anyway. However, ARG_PTR_TO_{LONG,INT} is a special case of ARG_PTR_TO_FIXED_SIZE_MEM just with additional alignment requirement. So it is better to just get rid of the ARG_PTR_TO_{LONG,INT} special cases altogether and reuse the fixed size memory types. For this, add MEM_ALIGNED to additionally ensure alignment given these helpers write directly into the args via * = val. The .arg*_size has been initialized reflecting the actual sizeof(*). MEM_ALIGNED can only be used in combination with MEM_FIXED_SIZE annotated argument types, since in !MEM_FIXED_SIZE cases the verifier does not know the buffer size a priori and therefore cannot blindly write * = val.

Metrics

CVSS Version: 3.1 | Base Score: n/a
Vector: n/a

l➤ Exploitability Metrics:
    Attack Vector (AV)*
    Attack Complexity (AC)*
    Privileges Required (PR)*
    User Interaction (UI)*
    Scope (S)*

l➤ Impact Metrics:
    Confidentiality Impact (C)*
    Integrity Impact (I)*
    Availability Impact (A)*

Weakness Enumeration (CWE)

CWE-ID:
CWE Name:
Source: Linux

Common Attack Pattern Enumeration and Classification (CAPEC)

CAPEC-ID:
CAPEC Description:


Source: NVD (National Vulnerability Database).